

Pinakin Davey OD, PhD, FAAO, FOWNS

Professor Of Optometry

WesternU Director of Clinical Research

DISCLOSURES

Has a relevant financial relationship with Sanofi, ZeaVision, Guardion Health and Innova systems as a speaker or research / consultant

The content and format of this course is presented without commercial bias and does not claim superiority and commercial product or service.

LEARNING OBJECTIVES

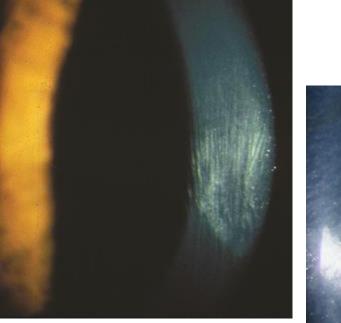
- Recollect basics of Keratoconus
- Know cornea signs of Keratoconus
- Understand the principles behind crosslinking
- Understand the FDA approved protocols
- Understand research behind crosslinking epithelium off versus epithelium on
- Understand the accelerated protocol

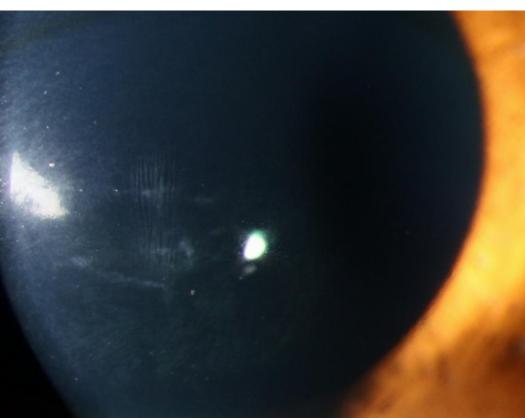
KERATOCONUS

- Keratoconus is a
 - progressive
 - bilateral ("true unilateral keratoconus does not exist." Global consensus)
 - asymmetric
 - ectatic disease
 - progressive corneal thinning
 - protrusion of the cornea leading to irregular astigmatism
 - visual deterioration
- Incidence 1 in 2000 (probably underestimated)
- \blacksquare Prevalence 0.054% USA Worldwide Big range 0.0003% to 2.3%

RISK FACTORS

- Down syndrome
- relatives of affected patients especially if they are young
- ocular allergy
- ethnic factors
- mechanical factors, eg, eye rubbing


- floppy eyelid syndrome
- atopy
- connective tissue disorders (Marfan syndrome)
- Ehlers-Danlos syndrome
- Leber congenital amaurosis



O SPOT THE PATHOLOGY

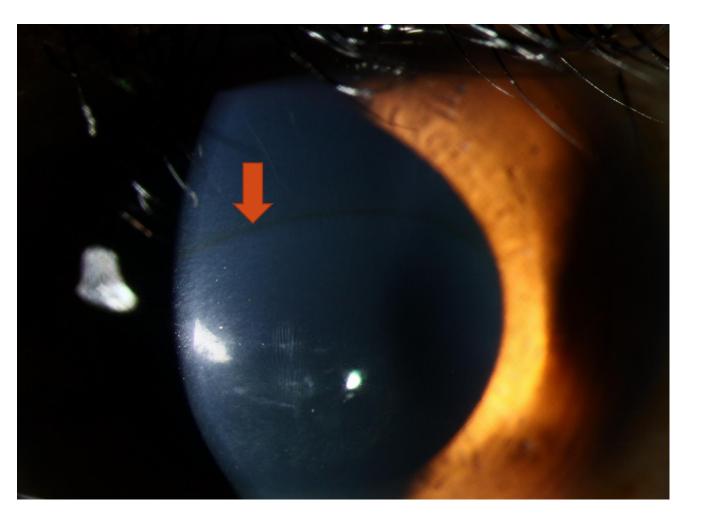
NAME THE PATHOLOGY

Vogt's striae

- Stress lines in deep stroma and Descemet's membrane
- Can disappear upon application of mild pressure to lower eyelid

NAME THE SIGN

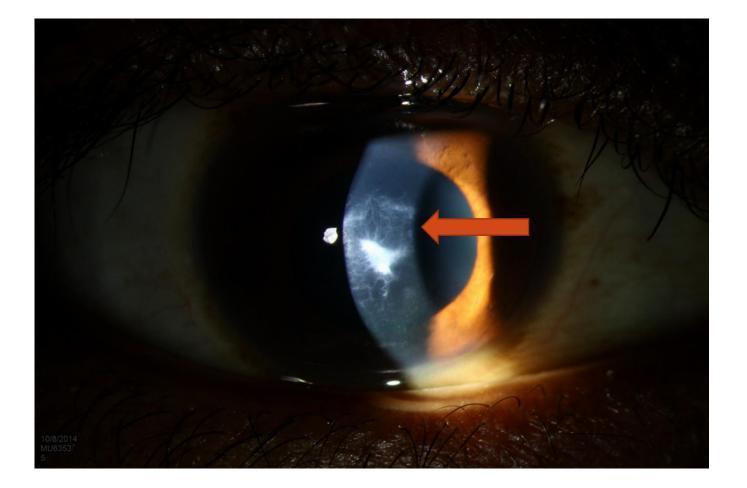
Rizzuti's sign


Sharply focused bean of light near nasal limbus

Usually, advanced keratoconus

NAME THE SIGN

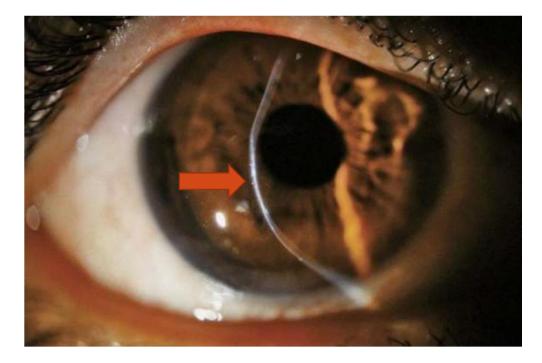
Fleisher's ring


- Iron deposit on epithelium
- Cobalt blue filter might help identifying subtle lines

WHAT IS THIS?

 Ruptures in Bowmans produces subepithelial or anterior stromal scars

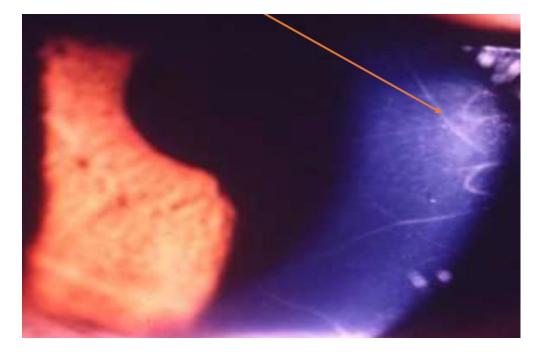
NAME THE SIGN


Charlouex's oil droplet reflex

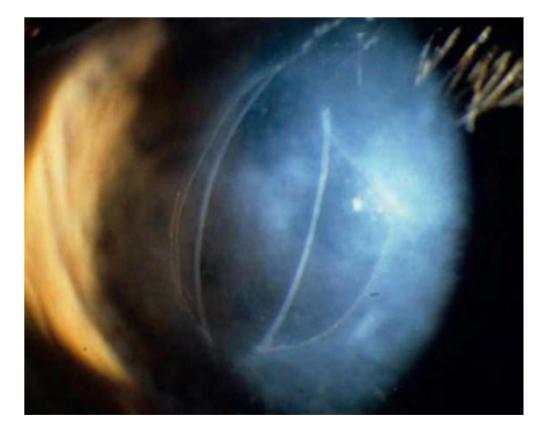
- Total internal reflection in conical cornea
- Dark shadow around mid periphery
- The dark shadow separates central bright red fundus reflex from red reflex in periphery
- Don't confuse it with galactosemia cataract-oil droplet opacity in lens

KERATOCONUS PATIENT ON SLIT LAMP

- Thin cornea at apex
- Increased endothelial reflection

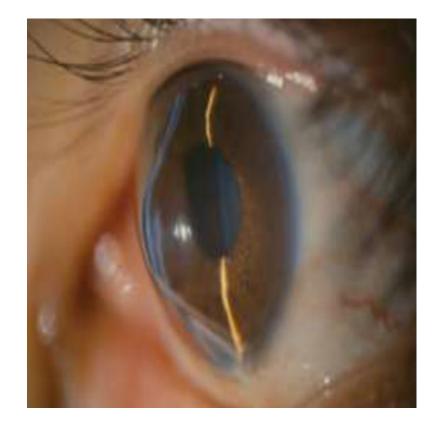

NAME THE SIGN

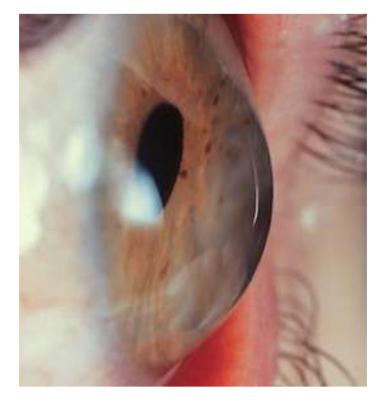
Munson's sign

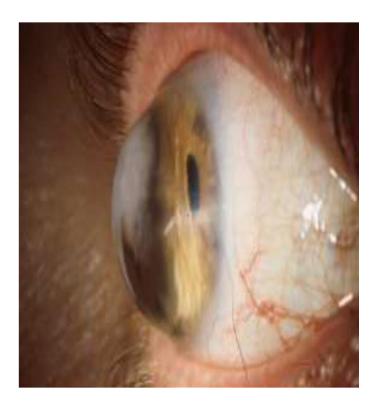

WHAT'S THIS?

Prominent corneal nerves

OCCURRED SUDDENLY



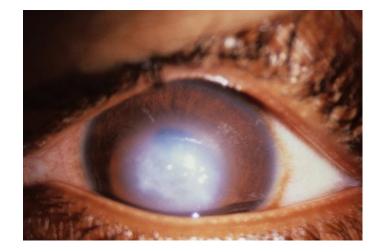

Acute hydrops

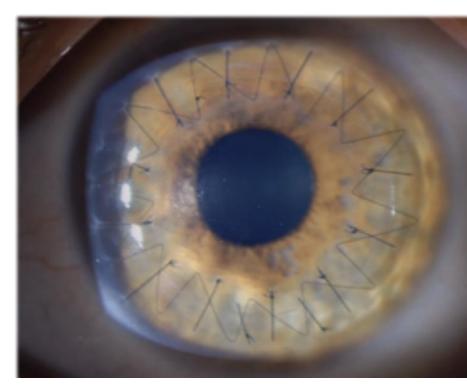

- Rupture of Descemet's membrane
- Sudden onset of redness and pain
- Sudden imbibition of aqueous humor into cornea
- Stromal edema

TYPES OF CONE

Round cone

Oval cone

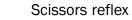

Globus cone

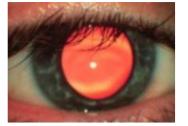


NATURAL HISTORY

• Keratoconus natural history:

- Scarring
 - Overall: 14%
 - **CL** wear: 17%
 - CL wear & K >52D: 38%
- Hydrops: 2.5%
- Keratoplasty: 15-21.6%





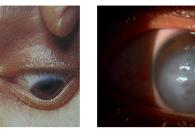
CLINICAL FINDINGS IN KERATOCONUS

Charleux oil drop reflex

Rizzuti's reflex

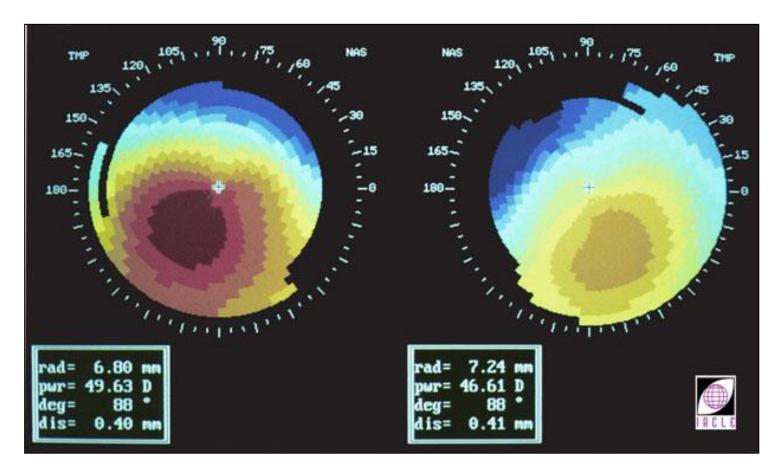
Vogt's striae

Fleischer's ring


Prominent corneal nerves

Corneal thinning

Munson's sign



Corneal hydrops

CLINICAL FINDINGS IN KERATOCONUS

Example topography findings

Various systems

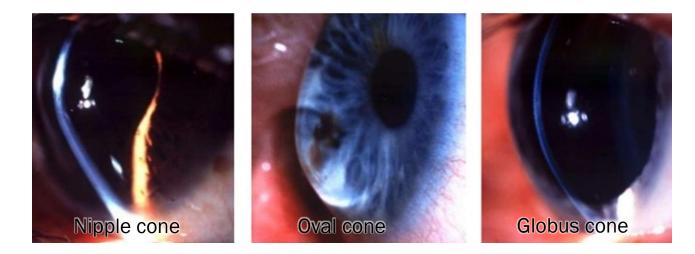
- 1. Amsler-Krumeich (gives stages)
 - K-readings, corneal shape (e-value), refraction, pachymetry, corneal scarring
- 2. Keratometry only (gives stages)
 - K-readings and mire quality
- 3. Morphology only (gives description)
 - Cone shape
- 4. Corneal topography (gives likelihood of having KC)
 - Kerato-refractive indices and predictive analysis

ODERASSIFICATION SYSTEMS

1. Amsler-Krumeich

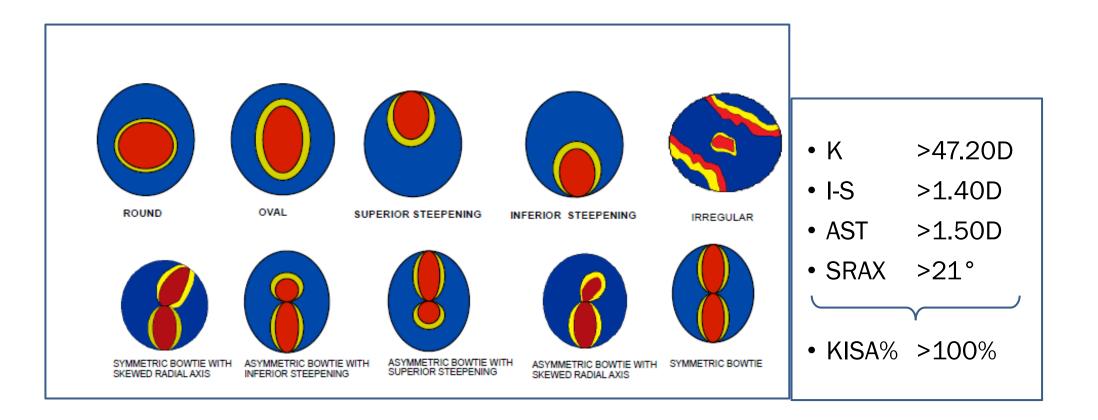
Stage	Findings
1	Eccentric steepening Myopia, induced astigmatism, or both <5.00 D K _m central <48.00 D
2	Myopia, induced astigmatism, or both from 5.00 to 8.00 D K _m central <53.00 D Absence of scarring Corneal thickness >400 microns
3	Myopia, induced astigmatism, or both from 8.00 to 10.00 D K _m central >53.00 D Absence of scarring Corneal thickness 300 – 400 microns
4	Refraction not measurable K _m central >55.00 D Central corneal scarring Corneal thickness < 200 microns

2. Keratometry only


Stage	K _m central Findings	
Mild	< 48.00 D	
Moderate	48.00 D to 54.00 D	
Severe	> 54.00 D	
t Grade 0 Grade 1 none slightly wa mires, <1/4 of the mire	avy mod. waviness extreme parts mod. doubling waviness missing	
Mire quality impacted	the mire	

3. Morphology only

3. Morphology only


Description	Morphology Findings
Nipple cone	Central location, diameter < 5 mm
Oval (sagging) cone	Diameter 5 to 6 mm
Globus cone	Diameter > 6 mm

CORNEAL TOPOGRAPHY CLASSIFICATION SYSTEMS

Rabinowitz (1999), KC screening

Rabinowitz, Y.S. and Rasheed, K., 1999. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. Journal of Cataract & Refractive Surgery, 25(10), pp.1327-1335.

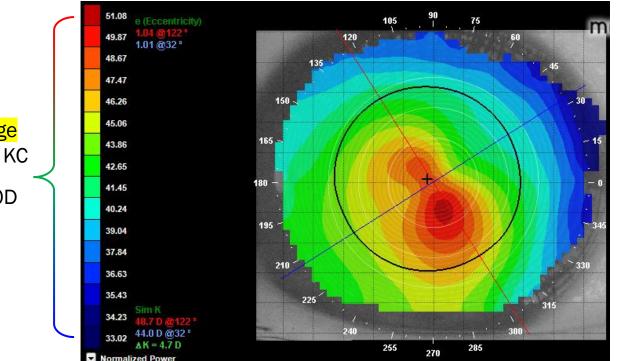
3. Corneal topography

• Rabinowitz (1999), KC screening

$$KISA\% = \frac{(K) \times (I - S) \times (AST) \times (SRAX) \times 100}{300}$$

- *K* = central keratometry value
- I S = (inferior) minus (superior) diopter value
- SRAX = skewing of the radial axes
- AST = keratometric astigmatism (ΔK)
- *all values absolute

60-100 KC suspect > 100 highly sensitive in identifying KC


3. Corneal topography

Medmont E-300

Medmontoutput	What is it?	Abnormal	
Axial curvature range	Flattest to steepest curvature range	>10.00D	
e value	Corneal flattening from center to periphery	>0.80	
I-S Index	Difference between average inferior and superior power	>1.40D	
SAI	Surface Asymmetry Index (corneal power distribution)	>0.8	
SRI	Surface Regularity Index (central corneal irregularity)	>1.0	

3. Corneal topography

Medmont E-300

Normalized Axial Curvature Range > 10.00 D indicates KC This cornea: ≈18.00D

29

- 3. Corneal topography
- Zeiss Atlas 9000

(c) 2011 CARL ZEISS MEDITEC

ATLAS

Revision 3.0.1.8

- PathFinder II module
- Evaluates cornea for several conditions, including KC
- Predictive analysis uses:
 - Corneal Irregularity Measurement
 - Toric Keratometric Mean
 - Shape factor (e-value square)

CROSS LINKING INDICATION

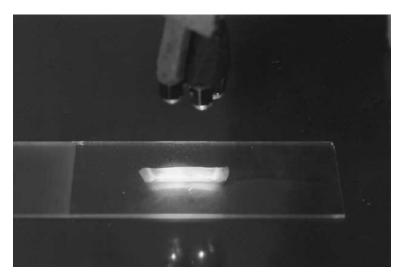
- Progressing keratoconus or post-LASIK ectasia
- Definition of progression is variable
- Global consensus series
 - At least 2 of these
- 1. Steepening of the anterior corneal surface
- 2. Steepening of the posterior corneal surface
- 3. Thinning and/or an increase in the rate of corneal thickness change

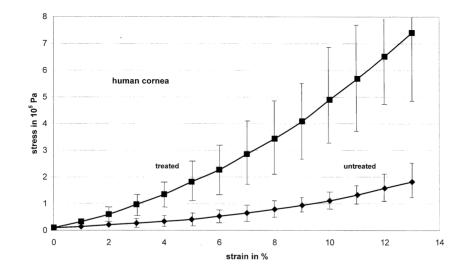
Clinical trials have used these criteria

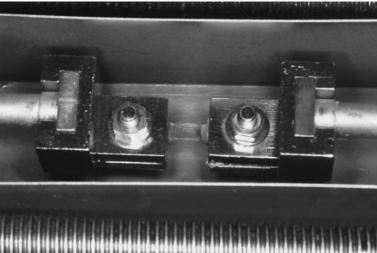
Steepest keratometry (K _{max})	>1 D increase from baseline
Flattest keratometry (K _{min})	>1 D increase from baseline
Mean keratometry (K _{mean})	>0.75 D Increase from baseline
Corneal apex power	>1 D increase from baseline
Manifest spherical equivalent	>0.5 D difference from baseline
Central corneal thickness	>2% decrease from baseline

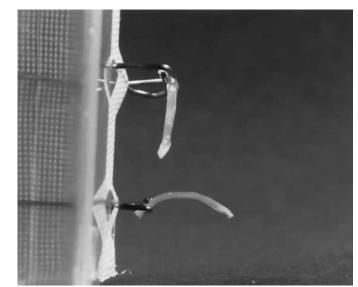
IDEAL CANDIDATE & WHO CAN WE RECOMMEND?

- Young patient (<30 years usually)
- Why?
- BCVA worse than 20/20 (Spectacle or CL)
- Refraction:
 - Increase of ≥ 1 D in manifest cylinder
 - Increase of \geq 0.5 D in manifest spherical equivalent
- Imaging:
 - Tomography: Steepening of anterior or posterior corneal surface. corneal thinning
 - OCT: evidence of progression in stromal thickness.

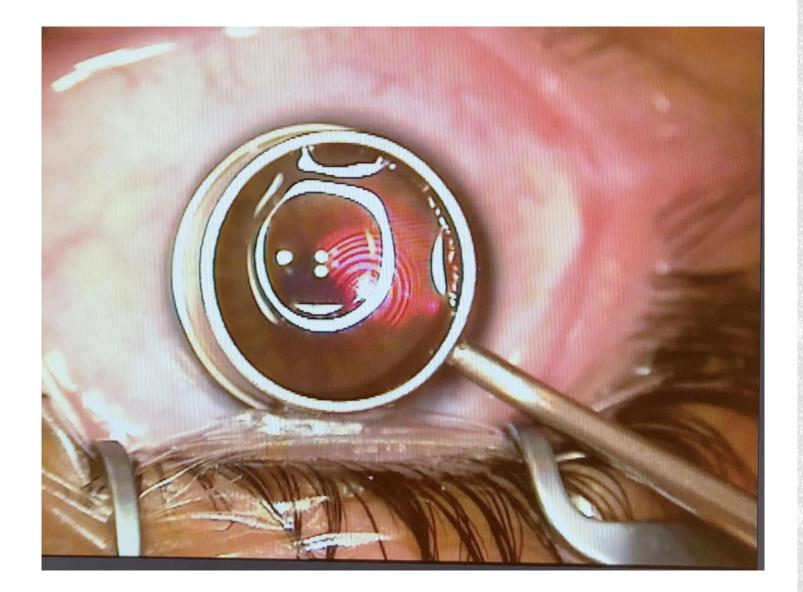



WHAT IS CROSSLINKING?

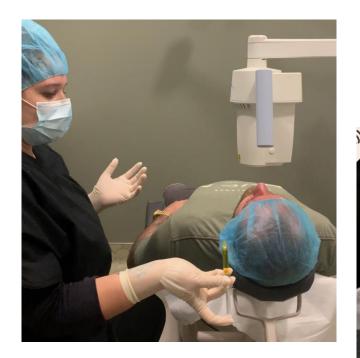

- The term "crosslink" derives from the assumption of creating <u>new</u> <u>covalent links</u> between collagen fibers in the stroma.
- Specifically, covalent chemical bonds between the amino terminals of the collagen side chains and the proteoglycans of the extracellular matrix.
- This can occur naturally in eye –glucose from aqueous humor along with exposure to sun



EFFECTS OF CROSSLINKING?



Video courtesy Dr. Amir Marvasti Coastal Vision


CROSSLINKING DRESDEN PROTOCOL-FDA APPROVED

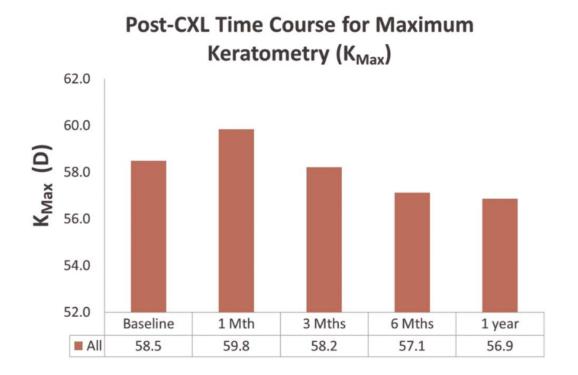
- Epithelium removal
- 8-10 mm

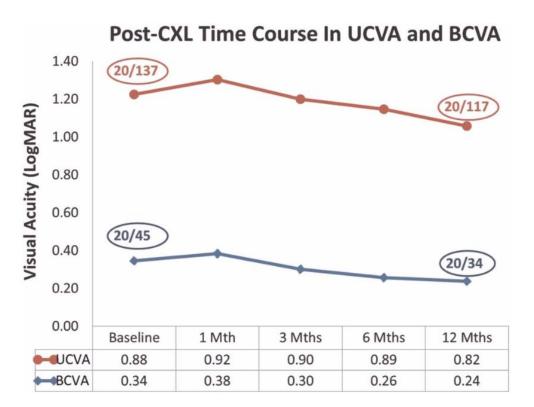
CROSSLINKING DRESDEN PROTOCOL-FDA APPROVED

- Riboflavin 0.146% + 20% Dextran application before and during UVA radiation
- UVA radiation is 370 nm
- 3mW/cm²
- Exposure for 30 minutes
- Every 5-minutes apply (Riboflavin 0.146% + 20% Dextran)
- Total energy 5.4J/cm²

POST OPERATIVE MANAGEMENT

- Epithelial healing
 - Delayed epithelial healing
 - Infectious keratitis
- Topical steroid
 - 1-2 month tapering schedule
 - Medical management of IOP if necessary
- Corneal haze
 - Up to 90% will have some degree of it
 - Typically resolves in 6-12 months





CROSSLINKING RESULTS

DOES IT ALL BECOME ALRIGHT?

UCVA

- No change: 51%
- Improve: 31%
- Decline: 18%

BCVA

- No change: 47%
- Improve: 45%
- Decline: 8%

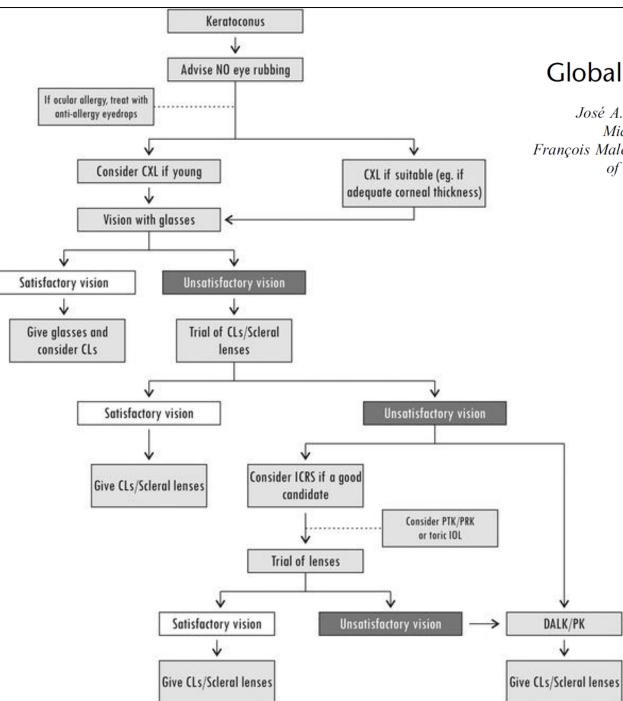
Kmax

- No change: 39%
- Decrease: 51%
- Increase: 10%

CONTRAINDICATIONS

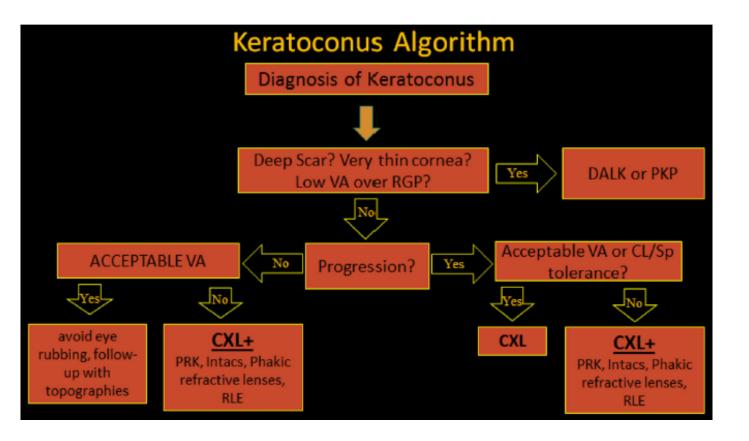
- Acute hydrops
- Total corneal thickness < 365 microns

- Relative contraindications:
- Herpetic keratitis
- Significant scarring
- Pregnancy
- Lactation
- Autoimmune disease



PATIENT EDUCATION

- 1. CXL will slow or stop the disease, it will not reverse it.
- 2. Glasses or contact lenses will still be needed after the procedure.
- 3. Vision might worsen before it improves.
- 4. Prescription might change up to 1 year after CXL.
- 5. You still need to be monitored after CXL for progression.


Global Consensus on Keratoconus and Ectatic Diseases

José A. P. Gomes, MD, PhD,* Donald Tan, MD, PhD,† Christopher J. Rapuano, MD,‡ Michael W. Belin, MD,§ Renato Ambrósio, Jr, MD, PhD,¶ José L. Guell, MD, François Malecaze, MD, PhD,** Kohji Nishida, MD,†† and Virender S. Sangwan, MD‡‡, the Group of Panelists for the Global Delphi Panel of Keratoconus and Ectatic Diseases

> ICRS intrastromal corneal rings DALK Deep anterior lamellar keratoplasty PK penetrating keratoplasty CL contact lenses SP spectacles

KERATOCONUS TREATMENT ALGORITHM

DALK Deep anterior lamellar keratoplasty PKP penetrating keratoplasty CL contact lenses SP spectacles PRK photorefractive keratectomy RLE Refractive lens exchange

ACCELERATED CROSS LINKING (NOT FDA APPROVED)

- Bunsen-Roscoe law of photochemical reciprocity
- Same photochemical effect can be achieved by delivering a similar total energy over a shorter period of time

ORIGINAL ARTICLE

Efficacy and Safety of Accelerated Corneal Cross-linking for Progressive Keratoconus: A 5-Year Follow-up Study

Antonio Moramarco, MD; Valentina Mastrofilippo, MS; Maria Grazia Romano, COA; Danilo Iannetta, MD; Luca Braglia, MS; Luigi Fontana, MD, PhD

- Avedro KXL
- 30mW/cm²
- 3 minute exposure
- Total energy on cornea 5.4J/cm²
- Effective at halting keratoconus
- Did not induce changes to corneal transparency
- Endothelial cell density
- Central Foveal thickness

EPITHELIUM ON CROSSLINKING (NOT FDA APPROVED)

- Epithelium left intact, no pain
- Possibly prevents corneal crosslinking complications?
- BAK+ ethylydiaminetetraacetic acid+ tetracaine to increase riboflavin diffusion
- Iontophoresis assisted corneal crosslinking

Ophthalmology Available online 28 December 2020 In Press, Journal Pre-proof (7)

Transepithelial versus epithelium-off corneal collagen cross-linking for corneal ectasia: a systematic review and meta-analysis

Siddharth Nath MD, PhD ¹ A 🗠, Carl Chap MD ² May Kariart MD ³ Laws Dapfield MUS ⁴ Babbarn Nowrouzi-Kia MD, MPH ⁵, Mark A. I

Show more 🗸

Conclusions: The efficacy of transepithelial CXL remains inferior to the epithelium-off approach, although it is significantly safer.

	Events/Total						
Author (Year)	Transepithelial	Conventional	RR (95% CI)	р	Effec	t	Weight (%
Soeters (2015)	8/35	0/26	12.75 (0.77-211.39)	0.076	+	→	18.3
Bikbova (2016)	1/76	0/73	2.88 (0.12-69.65)	0.515	<u> (a</u>		14.6
Lombardo (2017)	1/22	1/12	0.55 (0.04-7.96)	0.658			19.8
lqbal (2019)	8/88	2/183	8.32 (1.80-38.36)	0.007			47.3
Overall	18/221	3/294	4.49 (1.24-16.25)	0.022	-	<u>ھَ</u>	100
Q=3.6, P=16.4%					0.01 1 Favours Transepithelial	Favours Conventional	
	Events	/Total					
Author (Year)	Transepithelial	Conventional	RR (95% CI)	р	Effec	t	Weight (%
Soeters (2015)	0/35	4/26	0.08 (0.00-1.48)	0.091	<		19.2
Lombardo (2017)	0/22	1/12	0.19 (0.01-4.30)	0.296	<_∎		16.3
Rush (2017)	0/75	1/56	0.25 (0.01-6.02)	0.393			15.7
Cifariello (2018)	1/20	2/20	0.50 (0.05-5.08)	0.558			29.6
lqbal (2019)	0/88	5/183	0.19 (0.01-3.36)	0.256			19.2
Overall	1/240	13/297	0.22 (0.06-0.79)	0.020			100
Q=0.9, /2=0%					0.01 1	100	
					0.01 1	100	
					Favours Transepithelial	Favours Conventional	

CI = confidence interval; l^2 = heterogeneity; Q = Cochran's Q test; RR = relative risk

A-Disease progression B-Complications